Project Study Area
PlanWorks: Better planning. Better projects. (C01)

- Web based decision support tool
- Supports and improves collaborative decision making
- Built around key decision points in the project, LRTP, & planning process
- Provides a flexible roadmap for project planning and stakeholder involvement
Corridor Planning Toolkit

- The Decision Guide streamlines the transportation process by systematically building in collaboration. It was developed using examples of successful practice and with input from all partners in transportation decision making.
- The Decision Guide was developed from 23 in-depth, detailed case studies (Including the CA-MPO 2040 LRTP TCAPP Process)
Project Scope

1. Open a dialog with interests in the I64 Corridor
2. Build an understanding of the issues through collaborative discussions and by engaging the experts
3. Use transportation performance measure to identify deficiencies in the corridor
4. Identify ways to improve collaboration and communication on issues of governance, maintenance and project identification
5. Document lessons learned and produce a final document that outlines deficiencies and concept level solutions
Working Group Meetings

| Meeting 1 (Nov) | Scope and problem statement
| | Project Goals and process |
| Meeting 2 (Jan) | Goals
| | Public Safety |
| Meeting 3 (Mar) | Evaluation Criteria
| | Economic Development & Accessibility |
| Meeting 4 (May) | Identify Hotspots
| | Environmental |
| Meeting 5 (Jul) | Congestion and traffic
| | Review problem areas |
| Meeting 6 (Aug) | Lessons Learned
| | Recommendation of problem areas & next steps |

- Public Open House Dec 12
- Joint MPO Meeting
- Joint MPO Meeting
- Public Open House
Public Open House

- Crozet Library
- 18 people attended and provided comments
- Comment cards
- Online survey
- Poster maps
“Crozet growth volume on I-64 and 250 – plan for this growth?”
Pointing to Routes 151 and 250 – “Need to address this intersection”
Pointing to 250 on Afton Mountain – “Second eastbound lane on 250?”
Pointing to I-64 (mm 100) Afton Mountain – “Have to address this.”
“Rarely encounter problems from Exit 94 to I-81.”
Pointing to I-64 and I-81 interchange – “Have to address this.”
Pointing to area between mm 114 (after Sun Hill) and 118 – “SPEED and following too closely a big factor here!”
Pointing to Sun Hill (just past mm 114) – “Add a truck climbing lane?”
“Signal timing between 250 between Broomley and 29 needs addressing.”
“Can VDOT stage the emergency vehicles on 64 to help clean accidents during rush hour more rapidly?”
“Make transparent layovers for these maps to define crash ‘hot spots.’”
Public Survey Results

- The majority of respondents travel the corridor 5 or more times per week.
- Most trips are commutes to and from work (46.7%), followed by leisure trips (33.3%).
- Safety was ranked as the highest priority for I-64 & 250, followed closely by congestion.
- None of the respondents utilize commuter services (i.e. RideShare, Park & Ride lots, or transit).
Public Survey Results

Comments & Recommendations:

- Truck climbing or additional lanes on I-64 were
- Better bike and pedestrian infrastructure on 250
- More signage warning drivers of conditions
- Excessive speeds need to be addressed
COR-1: Approve Scope and Process

First steps: coordinating partners and establishing formal lines of communications between groups that communicate infrequently. Evaluation of decision points and creating collaborative decision-making across multiple disciplines and tiers of government will be included.

Deliverables: Draft Scope to guide planning process; Aggregate data repository.

Outcomes:
- The geographical scope
- Technical Scope
- Web Data Repository

http://campo.tjpdc.org/i64-corridor/
COR-1 Outcomes

- Geographic Scope
The Technical scope is based on meeting the regional need of improving the safe efficient movement of goods and people through the study corridor. Due to the corridor being super-regional in nature the technical aspects of the corridor study focus heavily on improving inter-governmental and inter-agency communication, coordination, and facility management.

Data Repository A project specific webpage has been set up within the Charlottesville Albemarle MPO domain. http://campo.tjpdc.org/i64-corridor/. The site includes information about the project, an interactive map, and a growing inventory of corridor related studies GIS and reports.
COR-2: Approve Problem Statements/Opportunities

SPaCE will engage facilitated collaborative meetings, focused stakeholder groups, public input sessions and multi-media engagement to identify a common understanding of the issues and seek partner and stakeholder identification of problems and opportunities.

Deliverables: Work towards agreement among stakeholders on the deficiencies and potential opportunities. Staff collaborating with the Working Group have identified the following deficiencies:
COR-2 Deficiencies

- **Safety**
 - Crashes
 - Speed
 - Reckless driving

- **Peak hour congestion**
 - Congestion at key exits
 - Traffic at Afton caused by slow moving heavy vehicles
 - Commuter demand
 - Through traffic demand

- **State of good repair**
 - Roadway pavement conditions

- **Accessibility**
 - Transit
 - Carpooling

- **Land Use**
 - Housing affordability
 - Jobs and housing mismatch
 - Sprawl
COR-3: Goals

Process: elicit stakeholder perspective and partner approval on the comprehensive set of transportation, community and environmental goals. Focus will be regional outcomes of reducing congestion, improving safety and enhancing multi-modal options in the corridor supported by access to comprehensive data. Outcome: Develop a list set of goals guiding the selection of a set of solutions addressing opportunities and deficiencies.

Deliverables: Draft goals (review at next meeting)

Outcomes:

- Identify congestion and safety hotspots (Afton, Exit 118 etc.)
- Recommend areas for future studies (define scope and need of these studies)
- Identify areas of concern for inclusion in LRTPs and Statewide Plans etc.
Next steps

- MPO’s will be developing an MOU on cooperation in the corridor
- Continue data gathering and review
 - Econ Dev, Accessibility, Congestion, Environmental factors
- Work through COR 3, 4 & 5
- Next Working group Meeting End of March
- Joint MPO meeting May (Draft MOU)
Trip Generation (Demand)

Travel from Staunton-Augusta-Waynesboro Area to...

- Metropolitan Washington Region: 33%
- Danville Area: 1%
- Hampton Roads Area: 2%
- Central Virginia Area: 2%
- Fredericksburg Area: 1%
- Harrisonburg-Rockingham Area: 1%
- Richmond Area: 1%
- Tri-Cities Area: 1%
- Winchester Area: 1%
- Roanoke Valley Area: 1%
- New River Valley Area: 1%
- Charlottesville-Albemarle Area: 1%
- North Carolina: 2%
- West Virginia: 2%
- Maryland: 2%
- Other: 1%

Travel from Charlottesville-Albemarle to...

- Metropolitan Washington Region: 26%
- Hampton Roads Area: 1%
- Central Virginia Area: 3%
- Fredericksburg Area: 3%
- Harrisonburg-Rockingham Area: 3%
- Richmond Area: 8%
- Tri-Cities Area: 5%
- Roanoke Valley Area: 1%
- New River Valley Area: 1%
- Staunton-Augusta-Waynesboro Area: 4%
- North Carolina: 1%
- West Virginia: 1%
- Maryland: 1%
- Other: 1%

Source: VTRANS 2040
Trip Generation (Demand)

Travel from Staunton-Augusta-Waynesboro Area to...

- Metropolitan Washington Region: 33%
- Hampton Roads Area: 23%
- Central Virginia Area: 13%
- Roanoke Valley Area: 13%
- New River Valley Area: 13%
- Richmond Area: 11%
- Tri-Cities Area: 9%
- Winchester Area: 7%
- Danville Area: 4%
- Federicksburg Area: 1%
- Harrisonburg-Rockingham Area: 1%
- Other: 1%

Travel from Charlottesville-Albamarle to...

- Metropolitan Washington Region: 26%
- Hampton Roads Area: 14%
- Central Virginia Area: 14%
- Federicksburg Area: 8%
- Harrisonburg-Rockingham Area: 6%
- Richmond Area: 5%
- Tri-Cities Area: 4%
- Roanoke Valley Area: 3%
- New River Valley Area: 3%
- Staunton-Augusta-Waynesboro Area: 1%
- North Carolina: 1%
- West Virginia: 1%
- Maryland: 1%
- Other: 1%

Source: VTRANS 2040
Vehicle Traffic

Hourly Traffic Distribution – Weekdays

Daily Person Hours of Delay per Mile

Monthly Traffic Distribution – Weekdays

Source: VTRANS 2040
Analyzing Crashes: 2011-2016

- 3,140 total crashes
- Rear end collisions are the most prevalent
- 30 fatalities
- Average of 1.5 crashes per day
- 25% occur during peak afternoon commute times
- Fridays have slightly higher number
Crash Severity

<table>
<thead>
<tr>
<th>Severity</th>
<th>Number</th>
<th>Percentage of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property Damage Only</td>
<td>2152</td>
<td>69%</td>
</tr>
<tr>
<td>Non-Visible Injury</td>
<td>257</td>
<td>8%</td>
</tr>
<tr>
<td>Visible Injury</td>
<td>548</td>
<td>17%</td>
</tr>
<tr>
<td>Ambulatory Injury</td>
<td>154</td>
<td>5%</td>
</tr>
<tr>
<td>Fatal Injury</td>
<td>29</td>
<td>1%</td>
</tr>
</tbody>
</table>

![Pie chart showing crash severity distribution]
Crash Type

<table>
<thead>
<tr>
<th>Collision Type</th>
<th>Number</th>
<th>Fatality</th>
<th>Serious Injury</th>
<th>Serious or Fatal % of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rear End Collision</td>
<td>1023</td>
<td>3</td>
<td>31</td>
<td>3%</td>
</tr>
<tr>
<td>Fixed Object Off Road</td>
<td>687</td>
<td>6</td>
<td>44</td>
<td>7%</td>
</tr>
<tr>
<td>Angle</td>
<td>535</td>
<td>8</td>
<td>27</td>
<td>7%</td>
</tr>
<tr>
<td>Deer or Other Animal</td>
<td>466</td>
<td>0</td>
<td>2</td>
<td>.5%</td>
</tr>
<tr>
<td>Sideswipe (Either Direction)</td>
<td>222</td>
<td>2</td>
<td>6</td>
<td>4%</td>
</tr>
<tr>
<td>Non-Collision</td>
<td>72</td>
<td>2</td>
<td>17</td>
<td>26%</td>
</tr>
<tr>
<td>Head On</td>
<td>54</td>
<td>3</td>
<td>10</td>
<td>24%</td>
</tr>
<tr>
<td>Other</td>
<td>36</td>
<td>1</td>
<td>3</td>
<td>11%</td>
</tr>
<tr>
<td>Fixed Object In Road</td>
<td>19</td>
<td>1</td>
<td>0</td>
<td>5%</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>18</td>
<td>3</td>
<td>6</td>
<td>50%</td>
</tr>
<tr>
<td>Backed Into</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3140</td>
<td>29</td>
<td>146</td>
<td></td>
</tr>
</tbody>
</table>
Severity Heat Map: 2011-2016

Assigned numeric value to Crash Severity:
- 1 = Property Damage Only
- 2 = Non-Visible Injury
- 3 = Visible Injury
- 4 = Ambulatory Injury
- 5 = Fatal Injury

Darker red indicates clustering of more severe crashes (3,4, & 5)
Fatal Crashes: 2011-2016

- 29 Crashes that resulted in 30 Deaths
- 3 involved adverse weather conditions
- 4 crashes involved with 3-axle or more vehicle
- 6 Crashes were known to have impaired (drinking) motorists
- Majority occurred in morning & afternoon commute times
QUESTIONS

Thomas Jefferson Planning District Commission

401 East Water Street
Charlottesville, VA 22902

Wood Hudson
Senior Planner

Resources: http://campo.tjpdc.org/