Transit Practices: Lunch and Learn

June 30, 2016
Peter Ohlms and John Miller
Quick Overview

- Transit's share of the modal market
- Factors that influence transit use
- Test yourself!
- Transit elsewhere in Virginia
Virginia's Transit Market: A Bit More than 1% of all Trips Statewide

Transit = local public transit, shuttle bus, commuter train, subway or elevated train, or streetcar/trolley

Virginia transit mode share by trip purpose (2009)
Relative Changes in Virginia Transit Use for the Work Trip

The absolute change is small

The percent change is high

a 12% increase

a 28% increase
Absolute Changes in Northern Virginia Transit Use for the Work Trip

Modal shares in Northern Virginia

- Drove Alone
- Carpoled
- Public transport + taxi + motorcycle
- Bike or walk
- Worked at home

Percent of Workers Age 16+

1990 CTPP
2000 CTPP
2012 ACS
Bottom Line for the Transit Market

• If we define transit broadly (bus, commuter train, shuttle), then, in Virginia:

  Transit accounts for 4.7% mode share for the home-work trip (VA) compared to 5.2% (U.S.)

  For the home-work trip, this mode share has increased by 28% from its 2005 value

  Large increases in this small mode share are observed at the national level as well
First Factor: *Immediate* Densities that "Support" Transit

<table>
<thead>
<tr>
<th>Mode (headway)</th>
<th>Residential Density</th>
<th>Commercial Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus (60 min)</td>
<td>5 du/acre</td>
<td>6 M ft²</td>
</tr>
<tr>
<td>Bus (30 min)</td>
<td>7</td>
<td>14 M</td>
</tr>
<tr>
<td>Light Rail (5 min)</td>
<td>9</td>
<td>42 M</td>
</tr>
</tbody>
</table>

You want these densities near the service
Local Density Examples

- Johnson Village: 5 units/acre
Local Density Examples

- Cherry Hill: >9 units/acre
Transit service begins to become feasible.

Virginia Jurisdiction Densities that "Support" Transit

Transit service begins to become feasible.
Variation in Densities that "Support" Transit

People per acre: 4, 200,000, 400,000, 600,000

- Atlanta (4%)
- NYC (25%)
- LA (5%)

"Support" = An Acceptable Subsidy

<table>
<thead>
<tr>
<th>Mode</th>
<th>Trip Cost</th>
<th>Farebox Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus rapid transit</td>
<td>$2.30</td>
<td>32%</td>
</tr>
<tr>
<td>Light rail</td>
<td>$3.60</td>
<td>28%</td>
</tr>
<tr>
<td>Bus</td>
<td>$3.90</td>
<td>26%</td>
</tr>
<tr>
<td>Commuter bus</td>
<td>$10.50</td>
<td>56%</td>
</tr>
<tr>
<td>Demand response</td>
<td>$35.20</td>
<td>7%</td>
</tr>
</tbody>
</table>

Source: FTA. National Transit Summary & Trends, 2015
Bottom Line for Density

- One needs higher residential densities to support higher levels of transit service

- But

 - Difference between density near the transit line and density of the entire jurisdiction

- Other factors matter.
Second Factor: Getting to the Transit Stop

Grid Pattern

Hybrid

Most people will walk only about a $\frac{1}{4}$ to $\frac{1}{2}$ mile—at most

Other factors:
- Pedestrian access
- Grade
Third Factor: Service Frequency

• Doubling the frequency of service may increase ridership by 30%-50%.

• Higher "elasticity" is noted when
 – Existing service has 30 min headways or worse
 – Incomes are in the middle to high range
 – Trips are shorter
Fourth Factor: Comfort

Example of Information

Courtesy GRTC
Bottom Line for Some Factors Affecting Ridership

• Some factors include
 – Density
 – Getting to the stop
 – Service frequency

• Factors not quantified per se (but they matter)
 – Branding and perception
 – Quality of the stops and information
 – Reliability and service coverage
Interlude: Test Yourself!

- Each of the following popular perceptions about rail vs. bus is one of these:
 - An **intrinsic difference** between bus and rail
 - A **misidentified difference** (not intrinsic)
 - A **cultural feedback effect** *(a result of perceptions, rather than a cause)*
Q1. Capacity

Rail provides higher capacities than buses to serve high-demand corridors.

Intrinsic difference

Misidentified difference
Q2. Maneuverability

Buses are more able than rail to maneuver around obstacles or take a detour.

Intrinsic difference
Misidentified difference
Cultural feedback effect

Q3. Permanence

Rail systems are more permanent than bus systems.

Intrinsic difference
Misidentified difference
Cultural feedback effect
Q4. Frequency

Rail provides more frequent service than buses.

Intrinsic difference
Misidentified difference
Cultural feedback effect

7/6/2016
Q5. Exclusive Rights of Way

Rail is faster than bus because it has an exclusive right of way.

Intrinsic difference
Misidentified difference
Q6. Emissions

Rail has lower emissions than bus.

Intrinsic difference
Misidentified difference
AND (limited) backfire effect difference

Train wheel image from https://en.wikipedia.org/wiki/Train_wheel
Q7. Ride Quality

Rail has a smoother ride than bus.

Intrinsic difference
Misidentified difference
Cultural feedback effect

7/6/2016

image from https://www.reddit.com/r/pics/comments/35dx52/how_smooth_the_bullet_train_is_in_japan/
Q8. Legibility

It is easier to understand a rail network.

Intrinsic difference
Misidentified difference
Cultural feedback effect

Some Policy Questions

- Travel time competitiveness
- Urban form
- Route directness

This figure is not current!
Example of a Policy Challenge

• Service allocation
 – Provide **coverage** to the whole community
 – Maximize **ridership** with fixed budget
 – Allocate service proportional to population?

• Choice among these is a value judgment
• We’re back to urban form and density
 – Density allows more people and activities within walking distance of transit
 – What’s more, transit ridership *per person* rises directly with density
That *Other* Virginia University

- **Fleet:** 41
 - Serves VT, Blacksburg, Christiansburg, and Montgomery County

That *Other* Virginia University

- 95,000 square-foot facility
- FY 15 ridership: 3.7 million passenger trips
- 90%+ of riders are VT students, 2-5% are faculty/staff
Transit Systems Differ in Scale

Source: National Transit Database
Questions?

June 30, 2016
Peter Ohlms and John Miller
peter.ohlms@vdot.virginia.gov / john.miller@vdot.virginia.gov